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Abstract—The high stress concentration near the interface of fiber-matrix in composite materials
causes the accumulation of the interfacial damages and the degradation of mechanical properties
of the materials. In this paper, by using the residual surface displacement data, we evaluate the
microscopic damages in terms of Somigliano’s dislocations in composites near the interface caused
by a series of unknown loadings. The goal of this research is to monitor the processes of the damage
evolution near the interface and to relate this microscopic damage to the degradation of the
macroscopic mechanical properties of the matenials.

The problem is an inverse problem, which is substantially different from the conventional
forward analysis of structural mechanics. Therefore, the uniqueness and stability must be considered.
It is proved that the residual fields and all the characteristic quantities along the interface, such as
displacement jumps (Somigliano’s dislocations), are uniquely determined by the residual surface
displacements. [t follows that the traction {ree parts of the interface correspond to cracks, the
normal displacement jumps indicate debonding and the tangential displacement jumps measure the
interfucial sliding. A special technique is utilized to stabilize the numerical calculations.

{. INTRODUCTION

The local stresses are extremely large at the interface between fibers and matrix of composite
materials when they are loaded. It is believed that these highly inhomogencous stresses
cause the accumulation of the damages near the interface of the materials, and relate directly
to the degradation of the mechanical propertics of the materials. Thercfore, the evaluation
of the interfacial damages in composite materials is very important in predicting the material
failure,

Relations at the interfuce between the fields in fibers (inclusion) and those of the
matrix are called interfacial conditions. In the conventional analysis of solid mechanics, the
interfacial conditions are given beforchand. In Eshelby's (1957) problem of ellipsoidal
inclusion, the interface is assumed to be perfect bonding, i.e. both normal and tangential
displacements are continuous along the interfuce. This analysis has been extended to the
sliding inclusion by Mura and Faruhashi (1984) and Mura et af. (1985). In their calculations
itis assumed that the inclusion is free to slip along the interface and the normal displacement
remains continuous. Other types of interfaces, such as the spring-type resistance model,
have also been used to investigate the intermediate stage between perfect bonding and
sliding inclusion (Lene and Leguillon, 1982). In any circumstance, the interfacial condition
and all the loading and unloading history must be given to make the problem mathematically
well defined.

The assumptions of perfect bonding, sliding and spring-type resistance ete. hotd
true for certain kinds of materials and loading stages. But as damages are accumulated
along the interface due to the stress concentration, none of these assumptions is valid on
the whole interface. Micro-cracks with different lengths and orientations are formed along
the interface. The status of the interface varies from point to point. Some parts remain
perfect bonding, while the other parts begin to debond or slide. The formation of the
interfacial damages is really a very complicated process. It is difficult to make legitimate
assumptions on the interfacial conditions especially when the loading and unloading history
is uncertain. Therefore, the conventional analysis cannot be carried out to compute the
stress field and to evaluate the degradation of the mechanical properties of the material.

The goal of this research is to evaluate the microscopic damages of interfaces caused
by unknown loadings, by using the residual surface displacement data on the free surface of
the material around an individual fiber, and to determine the internal degradation of the
macroscopic material properties in terms of Somigliano’s dislocations.
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The residual surface displacements are obtained in the following way. One reference
micrograph is taken before the material is put into usage. The other one is taken anytime
when we want to evaluate the damages of the matenials and all the loadings are removed.
The residual surface displacements are relative and defined as the difference between the
one in the second micrograph and the one in the first micrograph. We do not need to have
any knowledge on the loading or unloading processes. If no damages have occurred, the
two micrographs must be identical and therefore, the observed residual displacements are
zero. If damages do occur along the interface, the residual surface displacements are
nonzero. It is assumed that no damage occur in the fibers and the matrix. therefore, the
observed residual displacements are caused by the interfacial damages. However, this
assumption will be eliminated and the result will be reported in a separate paper.

(a) n

(c) -a, a,

.
Xp X3

Fig. 1. (a) Half spacc x, = 0 is dcnoted by D. Q is an inhomogencity. Surface displacements in

xye{—L, L] are used to rccover the interfacial quantities. [D] = {x, =0, |x;| 2 a,}: |DQ} =

[x, =0, |xof <as}; 1 = {x;, 20, xi/a} +xi/a} = 1}. (b} § and ¢ for the transformation of (18a).

0 < 0 < n corresponds to x on the interface [Qf; 0 < ¢ < n corresponds to X" on the interface

1. (c) 0 and ¢ for the transformation of (18b}). 0 € 0 < n corresponds to x on the interface [Qf
0 < ¢ < n corresponds to x’ on the free surface |D}+ Dl te. —L < x7 < L.
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Fig. 2. Displacements and tractions are zero on S, a part of the boundary of D.

A unique set of experimental techniques has been developed to measure the surface
displacements (Cox et al., 1986). It is based on stereoscopic analysis of pairs of optical
micrographs. The experimental measurements have high spatial resolution (0.1-100 um)
and high strain sensitivity (10~ * over 10 um). Since a typical diameter of a fiber in composites
is about several micrometers, these techniques can be employed to obtain the microscopic
displacements around an individual fiber. Therefore, a composite material is modeled locally
as a semi-ellipsoid inhomogeneity in a half space shown in Fig. 1(a). The inhomogencity
becomes a continuous fiber when a, approaches infinity.

The processes of cracking, sliding and debonding along the interface Q] are accom-
panied by localized plastic deformation or Somigliano's dislocations. Although the local
stresses are high, the plastic strains occur only in a small layer near the interface. In this
paper, as the first step to our goal, we replace the “damaged layer™ by a distribution of
Somigliano’s dislocations

b.(x) = [u(x)], x€]Q| )

where [...] denote the displacement jumps.

In Fig. I(a) the coordinate systems (x,, x,) and (x}, x3) coincide. Our problem is as
follows.

By using the residual displacements on the free surface —L <€ x5 € L, we evaluate
b,(x) as well as £,(x), the tractions on the interface, by the use of the inverse method. Once
b(x) and ¢(x) are found, the traction free parts of the interface correspond to cracks, the
normal displacement jumps indicate debonding and the tangential displacement jumps
measure the interfacial sliding. In the following section, it is proved that this inverse problem
has a unique solution.

2. PROOF OF UNIQUENESS

The conventional forward analyses have been conducted extensively in the fields of
science and engineering. On the other hand, inverse problems are inherently ill-posed.
Definitive answers to questions of the existence, uniqueness and stability have been given
only for a comparatively small class of inverse problems,

The following lemma is needed for the uniqueness of our problem.

Lemma. Let S, be a part of the boundary of a two-dimensionalt elastic body D (see
Fig. 2). If there are no body forces and

_tThe lemma holds for the three-dimensional case. A reviewer of this paper hinted its proof by use of the
Betti's reciprocal theorem. According to Muskhelshvili’s book. Almansi (1907) proved that.
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W, = 0 on S| (1)
I =0 on S; (3)

where u,. ¢, are the displacements and tractions, respectively. then u, = 0. 6, = 0 in the
entire domain of the body D.

The proof of the lemma was given by the book of Muskhelshvili (1963).%

Now we can prove the uniqueness of the problem in Fig. 1(a). Consider the domain
D} and assume that the two states of displacements «', 17 and stresses o). a,-z, give the
same surface displacements and zero surface tractions on — L < x5 < L. Then. the difference
fields

w=u'—u ando,=0)—0}

of course satisfy zero tractions and zero displacements on the sub-surface — L € x5 € —a,
and a, € x5 < L, which is the §, boundary of D-Q. Therefore, from the above lemma, we
obtained

wy=0ando,; =0 inD-Q,

that is

' =wland o), =6} inD Q.
It should be emphasized that the lemma holds regardless of the boundary condition
on |Q] since §; in the lemma is only a part of the boundury not the whole boundary.
Similarly, we can prove
H

u' =u’ and o) =a;

in 2.

This completes the proof of the uniqueness for the problem stated in the end of the last
section.

3. FORMATION OF THE PROBLEM

Let us derive the integral equation for the problem. The configuration is shown in
Fig. 1(a). Let u,(x) be the residual displacements in the domain D, caused by interfacial
dislocations of the material. x represents any ficld point in D. Choose another fixed point
in D, which is denoted by X’ to distinguish it from x. Now we derive the integral equations
which relate the field quantities at x to those at x'.

Consider the domain occupied by the matrix. The small domain ¢ is chosen to exclude
the point x* from the integration domain D -Q.

Duc to the symmetry of the material constant tensor C, ,, we have

Ci/kIka,l(x' x’)“:’.;(x) = Ci;ki'G:m,;(x* x’)"&,!(x) (4}
where G,.(x, X°) is Green's function in the half space, with elastic moduli C,j,. That is,
Ginm(X.X') is the displacement at point x in the x, direction duc to a unit force at point x’
in the x), dircction. G, (x.X’) indicates (8/0x,)G,,.(x. x). The expression of the Green's
function can be found in Dundurs (1962),

G,(x.x) = G (x.x)+ G (x.x) (5a)
wherce

t ibid.
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GM(x,x) = {—xd,log (R))+(x,—x)(x;—x)/Ri} (5b)

2rp(l+v)

is Green's function for the infinite medium
5 = 0 wheni#j
Y 1 wheni=j

Ri = (x,=x\)?+(x;—x2)°

and

G\ (x.x) = —(1+x)log (R)+2x(x, + X))/ RI+2x\[—2(x, + x})/R}

4n;t(l+x){
+4(x,+x1)’/R1—2x,Q2(x, + x)*/RI-1/RI)]}

1

Ve oo .2l )= 2k(. ‘,;,_ 3
Iyt~ (R 1og (R) = 26(xi +x1)°/R:

= 2x[20x, +X1D)/RI =4y (x +x))/RT=2x, R3]}

G¥(x,x) = P (= 14k tan™ (v = x)/(x, + )]+ 28(x, +x7)(x; — x3)/RE
=23 [2x(x, — x3)/R I44x, (0, +x))(x; ——x'z)/Rg]}
F(x.x") = anp(l+5) {(1=xr)tan "' [(x; = x2)/(x, + X))+ 280x; +x7) (X2 —x3)/R3
+26 [ 2h(x2 — X3/ RI+4x (x, + X)) (x, = x2)/R3]} (5¢)
where

R} = (x,+x})7 +(x,—x3)°.
The Green’s function in the half space, with elastic moduli Cfy, is
GH(x,xX") = G{"*(x,X) + G{*(x,X’) (5d)

where the expressions of G{"*(x, x’) and G!?*(x, x) follow from those in (5b) and (5¢)
by replacing u, v with u*, v*, respectively.

When (4) is integrated in domain D-Q-¢ with respect to x and Gauss’s theorem is
applied, we obtain

J;m CijtGrma (X, X )1, (x)n,(x) dis(x) _-jl-ﬂl CiitGms (X, X Yu(x)n;(x) ds(x)
_j| CI/kIka.I(x' x’)ul(x)"/(x) ds(x) _J; a Ct/kIka,Ij(xv x')ll,(x) dx
= f C,,HG....(X’X')llk.z(x)'l,(x)ds(x)*J CiiurGum (X, X )1t 1 (X)11(x) dis(x)
(] Q!

—J‘ Ci/le:m(xv xl)uk.l(x)n/(x) ds(x) -J C,‘/HG""(X. x')uk_,,»(x) dx (6)
lel D¢

where n,(x) is the outer normal shown in Fig. I(a), and | D] is also defined in Fig. 1(a).
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The boundary conditions and equilibrium for Green's function give

CiiuGimi(X, X, (x) =0 for x on |D|

Cillek’"-ll(x‘ x,) = 0 for X in D‘"Q*‘E (7)
and the boundary conditions and equilibrium for field u,(x) are

Cijntie  (x)n;(x) =0 for x on |D|

Ciuthh;,(X) =0 for x in D-Q-¢. (8)

When ¢ approaches to zero we have

li“gj Cij Gims (X, XI(x) ds(x) = — f0,,, 9
=0 Jel
where
0  when x on |DQ]
f=1<0.5 whenx on|Q]
1 when x“on | D)
and
IinsJ' Coai G (X, XDt ()11, (x) ds(x) = 0. )
o el

Equation (10) follows from the fact that Green's function behaves like log (R)) near
its singularities and (9) can be evaluated directly from the expression of the Green's function.
Using (7)-(10) and letting ¢ approach to zero, we can write (6) as

—[ha,,,(x’)+J CirtGrom s (X, X Y1 (x)11,(x) ds(x)—J 1, (x)G (x.X)ds(x) =0 (1)
2

jie]] il

where 1,(x) = C, u,(x)n,(x) are the tractions on the interface.

The integral equations for the inhomogeneity Q have the form similar to (11) with C,
and G, replaced by C#,, and G}, respectively, and the sign of #,(x) 1s taken properly. These
equations are

Brun(x)+ J CluG o (X, XX (x)n, (x) ds(x) — J
162

L(X)G*(x.x)ds(x) =0 (12)
iy
where
1 when x” on | DQ|
f*=<0.5 whenx' on|Q]

0 when x” on | D}

and
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t(x) = Chaud (x)n;(x) = C it (X)1;(x)

means that tractions are continuous along the interface. [ DQ] is defined in Fig. 1(a).
We define the interfacial displacement jumps as

bi(x) = uX(x) —u;(x). (13)
Our purpose is to determine u(x), t,(x) and b,(x) from the residual surface displacements

on —L<x;< L.
When X’ is on |Q], (11) and (12) yield

—0.5u,,(x)+ J‘ C.,k:Gf.,...l(x,x’)u,-(X)n,(X)dS(X)~jn’ H(X)Gam(x,x)ds(x) =0 (14)
ji¢]]

0.5[h (X )+ 1, (x)]+ j Sk G B (X, X)[6:(x) + ui(x)]n(x) ds(x)

19

- J‘ L(X)GE(X.X)ds(x) = 0. (15)
oy
For any x” on the free surface — L < x5 € L, (11) and (12) become

L 1 CiittGm s (X, X Yt (X1, (x) ds(x)
]

, w,(x’} forx’on|Dj
*J:m t,(X)G,, (x, x") ds(x) = {0 for x’ on | DO (16)

L‘ CloniG s (% XY bi(x) + 4, (x)]n (x) ds(x)

-l (x} forx on|DQ|

- ,{()[ ll(x)G::l(x! x’) ds(x) = {0 fOr xl on |D‘ * (17)

Equations (14)~(17) determine the six interfacial quantities u,, 1, and b; from the
known surface displacements u,(x’) on — L € x3 < L. There are in total eight equations in
(14)-(17) (since m = 1, 2), with six unknowns. This indicates the ill-posed nature of the
inverse problem.

By employing transformation of variables [see Fig. 1(b and ¢)]

x;=a;sinf, x,=a,cosf

Xy =a,sing, xy=a;cosp, x,x'on(Q, 0<ep,0sn (18a)
for (14) and (15), and
x, =a,sind, x,=a,cos0h,

X} =0, x'2==-7t~(p—L, x, x on{Qj+{DQ, 0<p,0<Ln (18b)

for (16} and (17), we can write (14)—(17) as (see Appendix A)
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ﬁ K@, o)V do =U(p). 0<o <. (19)

where K(#. @) is an 8 by 6 matrix given in (A13) and V(6) and U(g) are
V(O) = [t (0). u:(0). 1,(0). £:(0). b, (8). 5, ()] (20)

U(¢) = [0.0.0.0.0.0, -5 (). —(@)]’. forpe({(L—a)n2L.(L+az)n/2L)
U(g) =[0.0.0.0.16,(). t'3(¢).0.0]".  foro¢{(L —a.)n,2L.(L+a:)n/2L). (1)

The nature of § and ¢ is indicated in Fig. I{b and ¢).

Equation (19) is an integral equation for V(0). If we can solve (19) for V(8) by
using given U(g). the surface displacements. we obtain all the characteristic quantities on
the interface. However, there are two difficulties remaining.

The first one is the instability. The stability of a problem refers to the influence of the
error of the input data on the perturbation of the solution. In (19) the right hand term
U(y) comes from the experimental measurements. U() is an approximation of U®(p).
the real surface displacements. The accuracy of these data is estimated by the following
expression

U@~ U ()" <& (22

where ||...]] s L, norm, that is

U1 =f U (@)Ulp) do (23)

3

and U’(p) is the transposc of U(p). The stability of the problem states that, as the
experimental data U(e) are sufliciently close to the exact data U%(p) (i.e. & « 1), the solution
V(@) of (19) should be very close to the exact solution of the problem.

It is believed that most mathematical problems corresponding to physical phenomena
are stable. However, inverse problems are generally unstable. Although we have proved the
uniqueness of the problem in Fig. 1(a), due to the ill-posed nature of the Fredholm integrul
equation of the first kind, Guo and Mura (1989a) and Mura er of. (1Y86), eqn (19) is
extremely unstable. Even though U(p) deviates only slightly from U%(¢), the solution of
(19) defers greatly from the exact solution.

The other ditficulty is that (19) has cight equations with six unknowns. [t cannot be
solved numerically in a conventional way. Therefore, special consideration must be taken.

4. METHOD OF SOLUTIONS

The so called “regularization method™ was suggested by Tikhonov (1963) to solve
one-dimensional Fredholm integral equations of the first kind with regular kernel. Such
equations are numecrically unstable. The regularization method is based on the radical idea
that the stability can be attained by narrowing the class of possible solutions through the
introduction of an auxiliary positive definite functional. Gao and Mura (1989a) have
utilized the regularization method in their calculations of residual plastic strains.

A new well-posed problem related to (19) is derived in the following way.

Since problem (19) has the unique solution, it is equivalent to the following variational
problem
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Min V()]

=0 (24)

Subject to Jl K(9, p)V(0)d0—U(p)
0

where the norms follow the definition in (23).
Since U(g) is the e-approximation of surface displacements, according to (22), the
variational problem (24) is further modified as

Min | V()|
2

Subject to =& (25)

f K(8, 9)V(8) 40— U(o)

Problem (25) is equivalent to

2
- B:I} (26)

J K(6.9)V(8) d0 - U(y)

0

Min {HV(G) !I2+A|:

where A is a Lagrange multiplier.
Let a = /4, we can write (26) as

2 —e:l}. 27)

Min {cx v +l|: JR K(0, @)V(0) d0-U(p)

The Euler equation of (27) is
J K*(0,.0)V(0) dO+aV(p) = U*(¢) ¢$e[0.n] (284)

and a is a positive parameter determined by
f(@) =0, (28b)

with

2

—-&

S(@®) = l J; K(9,9)V*(0) d0—U(p)

where V*(0) is the solution of (28a) and
K*(0.¢) = L K7(¢,9)K(0,0)dp ¢€[0,7] (28¢)
U*(¢) = L K'(¢,9)U(p)do ¢€[0,n]. (28d)

K7(¢. ¢) is the transpose of the matrix K(¢. ¢).

Equation (28a) is a Fredholm integral equation of the second kind with a self-
adjoint kernel K*(0, ¢). Itis a typical well-posed problem. It can be proved that the solution
of (28a) is stable for the small perturbation of the measurement term U(g). That is, when
g in (22) is sufficiently small, the solution of (28a) is a very good approximation of the exact



910 Z. Gao and T. Mura

solution of the problem. More detailed discussions can be found in the authors’ publication,
Gao and Mura (1989).

5. NUMERICAL CALCULATIONS

Equation (28a) is the new equation derived from our original problem (19). The
parameter x in (28a) satisfies the nonlinear equation (28b). For any chosen 2, equation
(28a) can be solved by using conventional techniques. An iteration procedure should be
used to adjust x such that equation (28b) is also satisfied.

There is no general method for solving nonlinear equations. Depending upon the
equation we deal with, the iteration procedure may not converge. Fortunately, it can be
shown (see Appendix B) that f(x) is an increasing function and

f(@) <0 29)
and
f(x) >0 (30)

fin x— &0

Therefore, the following convergent algorithm is constructed.

Step L: & is chosen from our knowledge on the accuracy of the displacement data.
Step 2: Compute K*(0, ¢), U*(¢) from (28c) and (28d).

Step 3: Let 8 be a given small positive number for convergence criterion. Choose
positive numbers a, and 2, such that ¢, < a,, and

Slay) <0, f(ay) > 0.

Step 4: Choose a = (¢, +2,)/2 and solve (28a) again.

If | f(a}] < & then take V*{#) as the solution and stop, else go to Step 5.
Step S: If f(x) >0, leta, = 2, 2, = a, else let 2, = a, %, = 5.

Go to Step 4.

In the Step 4, equation (28a) is solved in the following way.
The interval [0, n] is divided into ten equal length elements:

n 7
= e (- — | = I
El [lO(l ‘)-lol:'- ! l,..,...,l().
V*(0) is considered as a constant in E,, i.c.

Vi) = V*(0,), for ek,

where

When ¢ is chosen as
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uy/ey

-10.1

‘2-0/—\".0 008 1,0 /—\2'0
b 1l ] i

lenz
-+0.1

'J-OJS

-{-0.2

—1 -0.25

Fig. 3. Surface displacement, ', used to compute the interfacial damages.

S ag forj=12...,10,
eqn (28a) yields to a system of algebraic equations, which can be solved for V*(0,).
i=12..... 10.

As we have mentioned in the introduction, the stereoscopic analyses of optical micro-
graphs have high spatial resolution and high strain sensitivity, which enable us to measure
the microscopic surface displacements around an individual fiber. When these measured
surface displacements are used in (28a), we can evaluate the interfacial damage quantitics
W (0), 1 (0). (0. t:(0). b,(0), b (0).

An cxample is presented here to demonstrate our method. The configuration is shown
in Fig. 1(a) with L =n/2, ¢, = 1.0, a; = 0.942, u* = 16.15 GPa, v* = 0.3, u = 12.8 GPa
and v = 0.25.

After a serics of unknown loadings, damages arc accumulated along the interface. Our
purpose is to determine the quantitics u,(0), ux(0), £,(0), t(0), b(0). b,(0) on the interface
by using surface displacement data and solving (28a).

In this example, to test the method and make comparison, & is taken the same as the
surface displacements caused by interfacial sliding dislocations (no debonding)

bi(0) = —a,aisinOcos®0/{[a,sin 0} + [, cos 0]°}*

bsy(0) = a,ajcostsin® 0/{[a,sin 0]* + [u, cos 0]} "* 30

and therefore we can compare the numerical results with those caused by the dislocations
in (31). 0 is defined in (18) and shown in Fig. 1(b). The displacement and stress ficlds caused
by (31) can be calculated easily since it is a well posed forward problem. In applying the
method to a practical problem, however, we need to obtain the data from experiment. The
surface displacements u} are shown in Fig. 3 and Fig. 4. These residual surface displacements

U%/a"

—40.12
—{0.08
—10.04

-2.0 -1.0 -0.04 — Xy/a,
-0.08
-0.12 ~

Fig. 4. Surface displacement, «}, used to compute the interfacial damages.
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Fig. 5. Displacement «, on the interface {in matrix side). Dashed line is the exact solution. Solid
line is the numerical result. 8 is shown in Fig. [(b-and ¢).
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Fig. 6. Displacement u, on the interface (in matrix side). Dashed line is the exact solution. Sofid
line is the numerical result,

have error comparing with the exact surface displacements caused by the dislocation in
(31). The & in (22), which measures this error, is of order of 10 %,

In the numerical calculations, the algorithm described in the beginning of this section
is utilized. Figures 5-9 show the comparison of numerical results (solid lines) to the exact
solution {dashed lines, caused by (31)]. The positive directions of n and s are given in Fig.
1(a). The final value of « is 0.0000008.

The numerical calculations show that the computed normal displacement jump is
negligibly small and the tractions vanish only at some points (not a part) of the interface.
Therefore we conclude that no cracking or debonding his happened along the interface.
Tangential interface sliding does occur and its distribution is shown in Fig. 9.

6. CONCLUSION

In this paper we present a method for the nondestructive evaluation of the interfacial
damages in composite materials. It has been proved that the residual fields and therefore
all the characteristic quantities along the interface such as the displacement jumps [1,(8)]
and the tractions 1,(#), are uniquely determined by the residual surface displacements. It
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0.5 —

Fig. 7. Tangential traction f, on the interface. Dashed line is the exact solution. Solid line is the
numerical result.

Fig. 8. Normal traction £, on the interface. Dashed line is the exact solution. Solid line is the
numerical result.

bg/8¢
0.5 ~f
0.4 —
0.3~
0.2 —
0.1 P

-0.1
-~0.2
-0,3 —

-0.4 -

-0.5 —

Fig. 9. Displacement jump b, on the interface. Dashed line is the exact solution. Solid line is the
numerical result.

follows that the traction free parts of the interface correspond to cracking, the normal
displacement jumps indicate debonding and the tangential displacement jumps measure the
interfacial sliding. It is clear that the residual surface displacement data do contain very
important information about the damages inside the materials. Once an appropriate algor-
ithm is employed, we can extract the information from these data. The key point is that
the conventional numerical techniques cannot be used directly in such inverse problems.
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When we seek a numerical solution, we should pay special attention to the stability of the
problem. The method we presented in this paper can be employed for such a purpose.

The problem of evaluating the localized plastic damages has also been considered.
{Guao and Mura. 1989a.b). It is shown that, although the residual surface displacements are
not sufficient to recover the shape of the damage domain and the exact distribution of
the residual plastic strains, some important characteristic quantities associated with the
dislocations of the material can be obtained. These quantities include stresses in the vicinity
of the damage domain. lower bounds of the strain energy or any other quadratic functions
of the plastic strains. By using the obtained characteristic quantities and some constitutive
models on the local plastic deformations, we can examine closely the localized microscopic
plastic deformation near the interface. and relate the local damages to the degradation of
macroscopic material properties. ,

The residual surface displacements serve as sensors for the damages inside the materials.
The coordination and feedback among experimental measurements, constitutive model and
evaluation of plastic deformation by surface displacement data enable us to elucidate the
relationship between the current condition of the interface and the rate of accumulation of
plastic damages due to any unknown loadings. All sorts of inverse or semi-inverse problems
can be solved in a similar approach.
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APPENDIX A
Equation (19) can be obtained by following procedure. The configuration of our problem 15 shown in
[y, 1), o
In equations (14) and (15), both x and x” vary on interface [Q. Therefore, transtormation of variables

x=x(): x;,=a sml, x,=aycosl

X =X(@): X, =upsing, xXy=daycosg, 0<p < (AD)
changes (14). (135} to
J It..(0, tp)u,(())d(l—-f 0. hdd =0, 0<p<n (AD)
0 )
J 2.8, ) (0) d0+f 2.0, @)b () do—j 0. (NdY =0, 0Lp<T (A3)
{1 0 i}

where the nature of 1 and o is shown in Fig. 1(b) and
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ds
.6, @) = —0.56.5(p —0) + {C,,.,G.,.,,(x. x')@ﬂ,} {x =x(0). %" = x'(e)} (A4)

ds
26, 9) = —0.55,.5(¢¢9)+{ G iy (%.X) Eén,} {x = x(6), X' = x'(9)} (AS)
» d‘r I ’
Z.(6.9) = Gu(x.X) 5| {x = x(O). X' = X' (@)} (A6)
L ds
In0.0) = GL(x.X) 55 {x = x(6). x" = x'(¢)} (A7)

(¢ ~8) in (Ad) and (AS) is the Dirac delta function.
For equations (16) and (17). x varies on || and x’ varies on the {ree surface x| = 0, x3€{~ L. L}. Therefore,

we use
x=x(): x, =asin®, x,=a,cos8,

X" = xX(¢): x’:=0.x’,=%¢—£, 00K (A8)

which changes (16) and (17) to

* " (o) o¢R
J; Con(0, @)u, () d0-£ A, (0. 9)1,(0) dO = {0 oeR (A9)
where R = [(L—anf2L, (L+a,)n/2L], and
. " ® - ".'..(‘P) YE R
3.0, @)u () d0+ | To(0, @b 0y O~} AL(0, @) (D) d0 = {AL0)
5 o o 0 ¢¢R
where 8 and ¢ are indicated in Fig. 1(c) and
W, ds R
rbn“’. ‘3’) = C”uGi,..J(X‘ X )”1 a'?)‘ {K = !(9). X =X (‘P)} (Al l)
. ds , ,
8 (0. 9) = G (x.X) 5l {x = x(0). X" = X'(9)}. (A12)

The corresponding, quantitics for CJ,,, G, are denoted by Ta(0, @) and A%(O, ¢). It should be noted that the
transform x* = x’(¢p) in (A1) and (A12) is given in (A8) which is different from the one in (Al).
When we defined matrix K0, ¢) as

rn, I, -=E, =I 0 07
m, N, -I, -Iy 0 0
S n;! ‘ZH —z;l n?k ngs
n AL I, -In nn i
e I e Y I § “
T, T -4, -Ay 0 0
T rgx —AY —4AL F?x f‘;;
Lry: It -4y, -AYL I, I

then cquation (19) is obtained from (A2), (A3), (A9) and (A10).

APPENDIX B

Let0 €y < & V() and V*(0) be solutions of (27) corresponding to the given parameters y and a, respectively.
Then, we have

2

’ J; K(0. @)V'(8) 40— U(o) (81)

L] 2
rivi@r+ !U; K@, o}V* () dO—U(@)ﬂ ZyvOnt+

and
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*x i i iz
K(8. 0)V*(8) d9 ~U(gp)| sxu\“um#;‘ K(6. V() d8—- Lo} . (B2)
] Bl i In i

1
2 VO + [
i 1

Therefore, when (B1) is subtracted from (B2) we have

(2= VU € (2=} V(]
that is

IV} 1° < 4V(0)° wheny < x. (B3)
Furthermore, from (B1) and (B3).

Iy =fz)y = l J K{f. 0)V'(8) df’—U(tp)i
U]

1 12
J K(0. @)V*(6) d()—U(w)‘E UV = Vi) °} €0 wheny < x

0
The above equation indicates that f(x) is an increasing function.

Inequalities (29) and (30) can be obtained in the following way. As x goes to zero, the dominant terms in
(27) are

and the minimum is reached when V(#) is taken as the solution of (19). Thercfore,

N
—&

. l
J K, ) V'() d0— U((p)'
]

f(x) = - <0, asa—-0°. (B4)
As 2 goces to positive infinity, | V()| goes to zero in order to keep the term a| V() || ¥ in (27) finite. Theretore
() = [U(@) >0, asx— +x. (BS)

The last inequality holds because &, the error of displacement measurements, should be in lower order comparing
with the displacements themselves.



